
JOURNAL OF COMPUTATIONAL PHYSICS 55, 254-267 (1984) 

DERPER-An Algorithm for the Continuation of 
Periodic Solutions in Ordinary Differential Equations 

MARTIN HOLODNIOK AND MILAN KuBi&K 

Computer Cemer and Deparlmenl of Chetnical Engineering, 
Prague Institute of Chemical Technology, 166 28 Praha 6, Czechoslovakia 

Received August 5, 1982; revised June 8, 1983 

An algorithm for the continuation of periodic solutions of ODE was derived and tested. The 
algorithm is based on the shooting method and a standard continuation algorithm. Variational 
variables are used to compute the Jacobi matrix. The starting point on the periodic orbit is 
adaptively changed in the algorithm by fixing one component of the solution. Stability of 
periodic solutions along the continuous branch of solutions is determined by computing 
characteristic multipliers. Without difftculty the algorithm crosses limit points and at bifur- 
cation points, double-period bifurcation points, and points of tori bifurcation it proceeds along 
the original branch of solutions. The usefulness of the algorithm is demonstrated in two 
examples. One of them describes two stirred tank reactors with mutual mass exchange, the 
other one is the Lorenz model of turbulence. 

1. INTRODUCTION 

When studying mathematical models in physics, engineering, or biology, we are 
very often interested in how these behave as functions of model parameters, i.e., we 
try to construct the so-called solution diagram [ 71 (the term bifurcation diagram is 
also often used for this dependence). Simple mapping methods, sequential use of 
standard algorithms or certain continuation algorithms have been used to illustrate 
the dependence of periodic solutions on a parameter. 

Consider mathematical models in the form of systems of ordinary differential 
equations. Stationary solutions of the models result from a set of nonlinear 
(algebraic) equations dependent on a chosen physical parameter. Several methods for 
automatic generation of stationary solutions depending on a parameter have been 
developed: methods using the arc-length of the solution locus as the continuation 
parameter [l-5]. These algorithms are applicable in the study of flight control [6] 
and in the study of reaction-diffusion systems [ 7 1. 

Stable periodic solutions of model equations are attractors of the limit cycle type. 
Three different types of algorithms are designed to compute periodic solutions. One 
of the easiest approaches is a dynamic simulation of the studied system leading to a 
stable periodic orbit. In this way only stable periodic solutions are obtained. Unstable 
periodic solutions in which all characteristic multipliers are located outside the unit 
circle are similarly obtained by integrating the equations in the reverse time direction. 
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The second approach uses difference methods producing a large system of nonlinear 
algebraic equations having a band Jacobi matrix (81. The third algorithm is based on 
a shootirtg method for solving the nonlinear boundary value problem with mixed 
boundary conditions [9-121. One grave disadvantage of the shooting metods is that it 
fails for strongly unstable periodic solutions. 

Periodic solutions often depend on a parameter as is the case of stationary 
solutions. Several recently published papers provide a partial solution to this problem. 
A continuation of periodic solutions [ 111 is based on the algorithm DERPAR 111. 
However, a description of the algorithm is missing. A sequential approach to 
continuation of periodic solutions is used by Hassard [9], Rinzel and Miller [ 81, 
Seydel [ 121, and Chibnik [ 131. When the Newton method is used sequentially, the 
previously computed point of the solution diagram is used as an initial estimate. To 
pass through a limit (turning) point the algorithm has to be modified, in that the 
parameter and one of the variables are interchanged. 

The problem of the expansion of the periodic solution in the neighbourhood of 
Hopf s bifurcation point has been studied by several authors [9, 12, 14 1. These 
expansions can be used as an initial estimate for the continuation algorithm. 

This paper describes an algorithm for continuation of periodic solutions based on 
the shooting method and on the arc-length continuation algorithm DERPAR 111. 
This algorithm uses adaptive adjustment of the fixed variable on the periodic orbit 
and has been successfully applied to a number of practical problems. 

2. DEVELOPMENT OF AN ALGORITHM BASED ON A SHOOTING METHOD 
AND THE CONTINUATION ROUTINE DERPAR 

Consider an autonomous system of ordinary differential equations 

$=/)(4. I,..., Yn,a), i = 1, 2,. . ., n. 

A periodic solution with the period T satisfies 

y,(t + T> = y,(t), i = 1, 2 ,..., n. 

The transformation t = Tz produces 

dYi 
dz - Tf,(Y I 5.‘.> Y, 3 a>, i = 1, 2,..., n 

and mixed boundary conditions (2) appear in the form 

(1) 

(2) 

(3) 

(4) Y,(l) --Y,(O) = O, i = 1, 2,. .., n. 
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Choose initial conditions 

Yi(O) = xi 3 i = 1, 2,..., n (5) 

and the value of the period T. Integrate system (3) (for fixed a) starting from z = 0 to 
z = 1. (The integration can be performed from z = 0 to z = -1 alternatively, if the 
solution of the initial value problem is more stable in the negative orientation of z. 
However, the conclusions on the stability of the periodic solution will change. We 
shall not discuss this alternative here). 

As a result of the integration we obtain the values of the solution at z = 1 

Yi( 1) = Vi(xl T.a.3 X, 3 7’3 a). (6) 

The relation (4) has to hold for any periodic solution; thus we have to satisfy n 
equations 

Fi(x, ,..., x,, T, a) = pi(x, ,..., x,, T, a) - xi = 0, i=l n ,***, (7) 

with n + 1 unknowns x1 ,..., x,, T and one parameter a. Here the value of a is fixed. 
Therefore, choose a fixed value for one unknown, xk (except T because the solution of 
(7) exists only for discrete (and a priori unknown) values of r>. If the chosen value 
actually exists on the trajectory of the kth component of the wanted periodic solution 
Y&), z E [O, 11, i.e., xk =Y&) for a certain .Y E [0, l), we solve (7), applying 
Newton’s method for unknowns x, ,..., xk-, , xk+ , ,..., x,, T (with the values of xk and 
a fixed). 

The standard routine DERPAR [ 1 ] is described now. It is designed to continue a 
branch of solutions of n nonlinear equations for n + 1 variables (one of them is a 
parameter) from a solution on the branch already known. The algorithm consists of 
two steps, predictor and corrector. A detailed description is given in the Appendix. 
The evaluation of the Jacobi matrix of Eqs. (7) is necessary for the functioning of the 
DERPAR-continuation. 

The Jacobi matrix of (7) with respect to n + 2 variables x, ,..., x,, T, a can be 
evaluated by means of variational differential equations. For variational variables, 

Pij(z) = $3 

J 

the variational equations have the form 

+Ts$,$~sj, i,j= 1, 2 ,..., n. 
s 

(8) 

(9) 

Relations (9) are obtained by differentiation of (3) with respect to xj. Differentiating 
(3) with respect to a we obtain for 

aYi 
4i = aa (10) 
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the equations 

Initial conditions for these equations are 

P,(O) = a, 7 q/(O) = O, 

where 6, is the Kronecker delta. 

i = 1, 2 ,..., n. 

i,j= l,..., n, 

The elements of the Jacobi matrix of the system (7) are 

C?F. 
&=Pij(l)-dij, 2 =J(y(l), a),’ 

l3F. 

J 
&=qi(l)* 

(11) 

(12) 

(13) 

Column 8Fi/ax, is redundant for the given continuation algorithm. However, to 
estimate the stability of a particular periodic solution it is necessary to have a full 
matrix {aFi/axj). 

Thus we have all the necessary information required by the continuation routine 
DERPAR and the continuation of the solution of the system (7) for variables 
x, ,..-, xk-, 7 Xkf , ,**a, x,,, T, a can proceed until the fixed value xk disappears from the 
course of periodic solution. To prevent the disappearance, we have to change xk 
adaptively in the course of the continuation. The principle of algorithm modified in 
this way (the algorithm is called DERPER) can be summarized as follows: 

(a) k is fixed. 
(b) Choose an initial approximation of x, ,..., x,, T, a and give all necessary 

control parameters for DERPAR-routine. The value of xk is to remain fixed during 
continuation. 

(c) Call DERPAR for the variables x ,,..., xk-r, xk+, ,..., x,, T, a. DERPAR 
proceeds in a standard way in )2 + 1 variables x, ,..., xkp,, xk+ , ,.,., x,, T, a. In each 
step the following inequalities are tested: 

where 

xk- < xk < xl, 

Y: -Y/r > (1 - %> ~,a,, 

(14) 

(15) 

xk = +w + w,)y; + (1 - W,)Y,i I, 

xk +=~[(l-w,>y,+(l+w,)y:]. 
(16) 

The values of y; and yt are the minimum and the maximum of yk(z), respectively, 

’ Variational equations similar to (11) can be derived for ri = ay,/ST, too. However, the relation used 
in (13) is simpler and does not require any integration. 
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on the (maximum) interval z E [0, z,] U [zz, 11, where ~~(2) is monotonous. H,,, is 
maximum difference between maximum and minimum of the monotonic part of Y&z) 
on the entire interval z E [0, I], i.e., H,,, = y,(z ’ ) - y,(z - ). The extrema are 
schematically shown in Fig. 1. The values of o, , o2 E (0, 1] are usually chosen from 
the interval 0.5-0.8. 

If both inequalities (14) and (15) are satisfied, the value of xk is not changed and 
DERPAR utilizes a multistep (Adams-Bashforth) predictor formula. 

(d) If the inequality (14) or (15) is not satisfied, then xk is changed according 
to the formula 

xk “ew = &&+) +Yk(Z-)]. (17) 

The remaining components xi ,..., xk- i, xk+ i ,..., x, must be reevaluated using 
known (stored) profiles yi(z),..., y,(z) calculated last. This is done by finding coor- 
dinate z* between z- and z+, where the relation 

y,(z *> z Xy+ (18) 

is approximately valid. Then xyeW = yi(z *). The multistep predictor in DERPAR is 
then restarted beginning from the first order (Euler method). At the same time some 
control parameters in DERPAR are reorganized. This is necessary particularly for 
direction parameters used to keep direction along the solution locus curve. 

Denote N, ,..., N, + i the direction parameters corresponding to the variables 
xl~-*,xk-l, xk+,,“‘,x,, T, a. The values of Ni are either +l (corresponding variable 
increases along the solution locus curve with increasing arc-length parameter) or -1 
(corresponding variable decreases with increasing arc-length parameter). 
Reevaluating (17) does not cause any change in N, and N,, , because it does not 

FIG. 1. Schematic picture of a periodic solution. 
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change the period T or the parameter a. The remaining Ni can be changed, because 
the variables x, ,..., xk-, , xk+ i ,..., x, have been changed. For the reevaluation of Ni 
the following transformations are used 

NY’” = Ni signpii(z *), i < k, 

Nyew = Ni signp,, ,.i+ ,(z*), i > k. 
(19) 

The profiles pii are stored together with the profiles y,(z), i = 1, 2,..., n. A 
schematic flow diagram of the algorithm is shown in Fig. 2. The stability of the 
computed periodic solution is determined on the basis of characteristic multipliers 
(e.g., [ 16]), i.e., eigenvalues 1 of the monodromy matrix 

B = (%‘i/aXjI = {Pij(l)J, i,j= I,..., n, (20) 

where the pi,i are evaluated after corrector, cf. Fig. 2. The eigenvalues are computed 
by using standard algorithms, see, e.g., [ 15 J. For small n they could be evaluated as 
the roots of the characteristic polynomial 

P(L) = det(B - 11). (21) 

If all multipliers are located inside the unit circle (one of them always equals the 
unity), the periodic solution is stable. The presence of at least one multiplier outside 
the unit circle in the complex plane indicates instability of the periodic solution. 

The continuation procedure DERPER described above travels on the branch of the 
periodic solutins in question. Problems with the continuation method could arise 
when the so-called bifurcation points, i.e., those where some multiplier goes through 
the unit circle, are encountered. (All such cases can be detected if the development of 
multipliers along the branch is followed.) The algorithm continues on the original 
branch of periodic solutions in the three following cases: 

(a) L = -1 (double period bifurcation point), 

(b) A,, = r, + it,, 4: + ri = 1 (bifurcation to invariant torus), 

(c) /1= 1 (bifurcation point in the solution diagram). 

The bifurcated branch of periodic or quasiperiodic solutions is not followed. 
However, we can start the algorithm at a chosen periodic solution located on such 
new branch. This solution is found, e.g., by trial and error technique or some 
expansion algorithm can be used [2-5, 7, 19, 221. The case 

(d) J = 1 (limit point in solution diagram), 

where two branches of periodic solutions coincide and the number of periodic 
solutions is changed by two, causes no trouble. DERPER continues on the second 
branch of the solutions. The disappearance of periodic solutions at the point of Hopf 
bifurcation can also be detected by the algorithm (cf. Fig. 2). The more complicated 
cases should be analyzed by the user. 
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Results are stored and m 
is increased by 1 if m<4. 
Multipliers of periodic 
solution are evaluated 

+ - + 
Evaluation of yi, yk, Xk, Xk, Hmax 

; 
H max < E + r * 

I- 7 

4 point of Hopf bifur- 
cation encountered? 
End of the branch of 

F 

STCD 

periodic solutions? 

ti:l 1 I 

xk is found on stored profile 

of yk(z) according to Eq.(17) 

Change xl,...,",, by 

Y1 (z*) ,...,y,(z*), where z* 

is defined by Eq. (18). 

b;ei Redetermlnatlon of dlrectlon 

FIG. 2. Schematic flow-diagram of DERPER continuation algorithm. 
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3. APPLICATION 

The algorithm DERPER has been successfully applied to a number of practical 
problems. To illustrate, consider the problem of two interconnected well mixed cells 
where chemical reaction takes place. As a model chemical reaction the so-called 
Brusselator [ 171 scheme is chosen. The governing equations appear in the following 
form (n = 4 in relation (1)): 

dy, -=a-@+ l)Y,+Y:Y,+a(Y,-Y,)T 
dt 

dy, 
-=by,-Y:Y2+g(Y,-Y2), dt 

%=a-@+ l)Y,+Y:Y,+a(Y,-Y,)Y 

dy, 
-=bYrY:Y,+$ (Yz-Y.4)’ 
dt 

(22) 

Computed results are presented in Fig. 3. Here k = 1. The step length As (of the 
independent variable of continuation, i.e., of the arc length of the solution locus) is 
0.05 and the points on the obtained curve of the solutions are numbered. The relation 

(Ax,)’ + (AX&~ + (AxJ2 + (AT)’ + (da)’ z 0.05* 

is approximately satisfied for the neighbouring points in the figure in accordance with 
the Euclidean arc-length definition. The last relation is not valid between points no. 
40 and 41, where the algorithm changed the value of xk from 2.07664 to 3.79427. As 
a result, the dependences xi(s) are discontinuous between these two points. The values 
of the variables from the dependences in Fig. 3 for several points are presented in 
Table I. 

The leading characteristic multiplier 1, of the periodic solutions in question (in 
dependence on a) is presented in the upper part of the Fig. 3. Multiplier i, is always 
equal to unity and the remaining two multipliers are always located in a close 
neighbourhood of the origin. Dependence L,(s) crosses the constant line A2 = 1 four 
times. All these intersection points correspond to the limit points on the dependences 
of the solution on the parameter a, i.e., to the extrema on the curve a(s); these points 
are denoted L.P. in Fig. 3. More complete results are shown in Fig. 4, where the 
dependence of the amplitude of the periodic solutions on the parameter a (obtained 
by using DERPER), is presented [ 181. Note that there are four narrow intervals of 
the parameter a, where the periodic solutions in question are stable, i.e., the parts of 
the curves where L2 E (-1, 1). Four points of intersections of the dependence L,(s) 
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2.0Jvr,, , , / 

0 10 20 30 LO 50 60 70 
Point No. 

FIG. 3. A closed (isolated) dependence of periodic solutions on the arc-length parameter s. Results 
of the continuation algorithm (a = 2, b = 5.9, p = 0.1). 

with the line A, = -1 correspond to the so-called double period bifurcation points (or 
Brunovsky bifurcation) where a new branch of periodic solutions bifurcates from the 
original one and the period is doubled [ 191. These branches are also included in 
Fig. 4 (dashed lines). There are lots of other branches of periodic solutions for the 
Brusselator model (22). Some of them (obtained by the DERPER algorithm) are 
shown in Fig. 5. More detailed discussion of the steady state and periodic behaviour 
of the model (22) will be published in [ 181. 
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TABLE I 

Coordinates of Several Points in Fig. 3” 

Point 
Number Y,(O) Y*(O) Y,(O) YJ(O) T a AZ 

0 2.01664 4.5295 1 1.03402 4.19013 12.67268 1.274178 5.6 
20 2.07664 4.02883 0.93175 4.26953 12.00893 1.242149 -9.0 
40 2.07664 3.47374 0.88418 3.66905 11.44121 1.224062 2.5 
41 3.79427 4.05095 2.71528 4.52935 11.42782 1.225034 2.6 
50 3.19427 4.02935 2.37206 4.64518 11.66778 1.213523 -3.9 
65 3.79427 3.98939 2.20792 4.65871 12.35977 1.225408 11.3 

” a = 2. b = 5.9, p = 0.1. 

A model exhibiting the rich structure of periodic solutions is the Lorenz model of 
convection [ 2 11 

dy, 
dt=-oy, +oy,, 

dy, 
dt=-y,y3+cxy,-y2, 

dY, -= 
dt Y,Y~-b3. 

(23) 

For this model, too, the DERPER algorithm has proved its effectiveness. More than 
twenty branches of periodic solutions have been successfully continued [23]. An 
example of such continuation is shown in Fig. 6. The starting points characterized by 
(P) for continuation on individual branches, 

1.20 1.22 1.24 1.26 CY 1.28 

FIG. 4. Dependence of the amplitude of y, of the periodic solutions on the parameter a (a = 2, 
h = 5.9, p = 0.1). 
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1.0 1.2 1.4 ,' 

FIG. 5. Dependence of the amplitude of y, of periodic solutions of Eqs. (22) on the parameter a 
(a = 2, b = 5.9, p = 0.1, (-) stable, (---) unstable, H.B.P.-Hopf bifurcation points). 

100 150 200 N 250 

FIG. 6. Dependence of the amplitude of y2 of periodic solutions of the Lorenz system (23) on the 
parameter a (u = 16, b = 4, (-) stable, (---) unstable). 
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YI Yz Yl 

-0.067550 -56.4816 228.439 
-0.001030 -9.75909 154.598 
-0.026240 -36.5315 135.279 

T a A2 

0.73934 245 217 
1.65427 198 191 
1.48629 137 154 

are stable periodic solutions obtained by transient simulation of Eqs. (23) for a 
sufficiently long time interval. 

4. CONCLUSIONS 

The DERPER algorithm is effective as a tool for continuation of the dependence of 
periodic solutions on a parameter in a number of studied cases. It has also been 
applied to problems in neurophysiology [ 20 ] and various reaction-diffusion models. 
The algorithm is applicable in situations where the characteristic multipliers are not 
too large. When the multipliers are of 10’ order, the shooting method used for 
numerical integration of the initial value problems usually fails as in the case of the 
Hodgkin-Huxley model [ 201 where some parts of the dependence of periodic 
solutions can not be obtained by the DERPER algorithm. Sometimes we can reverse 
the direction of integration from z = 0 to z = -1, but usually a new large multiplier 
appears here again. In such situations a muitiple shooting or finite-difference method 
can be used instead of the simple shooting method. Modified versions of the 
algorithm are under development. 

The starting of the continuation algorithm poses another problem: the choice of 
index k and the value xk. Sometimes, we can use a priori knowledge of some periodic 
solution on the branch under study. If no a priori information is available the k, xk, 
and XI, -3 ,..., xk-, , xk+1 ,..., x,, T, a values can be generated at random as a guess 
for initial Newton iteration. When we have managed to obtain the starting point 
successfully, the algorithm continues the branch of periodic solutions and controls the 
choice of xk, while the value of the index k remains fixed. An improved algorithm 
could include an adaptive change of k depending on the structure of the sensitivity 
matrix B. 

The concept suggested can be also applied to nonautonomous systems. There T is 
fixed and the iteration proceeds in the variables x, ,..., x, and the parameter a. Thus, 
the algorithm is simpler because there is no need to fix k and xk. 

The algorithm suggested can also be used for partial differential equations. If the 
method of lines is used for the discretization of the original parabolic equations a 
large system of ordinary differential equations is obtained. Periodic solutions of these 
equations can be obtained using DERPER. However, computer time consumption is 
relatively high. 
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APPENDIX: CONTINUATION OF SOLUTION OF 
NONLINEAR EQUATIONS DEPENDING ON A PARAMETER ALONG 

AN ARC-LENGTH OF THE SOLUTION Locus-DERPAR [l] 

Let us consider a system of nonlinear equations 

gi(” I Y***Y un,a)=@ i = 1, 2,..., n (AlI 

depending on the parameter a. Let us denote u,+ , = a. Differentiation of Eq. (A 1) 
with respect to s gives 

dgi = ‘+’ %i d”j 

ds 
0 

,f?, auj ds - ’ 
i = 1, 2 ,..., n. 

An additional equation 

W’) 

(A3) 

determines the parameter s as the arc-length of the curve ~(a) in the space (U - a). 
Equations (A2) can be presolved with respect to the unknowns du, Ids,..., du,- , ids, 
du,+ ,I&., dun+, Ids depending on dx,,,/ds in the form 

gL& 2, i = 1, 2,..., m - 1, m + 1 ,...) n + 1. G-1 

On substituting (A4) into (A3) we obtain 

(A51 
i#k 

The sign of du,/ds is given by the orientation of the parameter s along the curve, 
sign (du, Ids) = N, . All derivatives du,/ds are then determined by Eq. (A4). The 
Adams-Bashforth explicit multi-step method with an automatic change in the order 
of approximation is used for the integration of differential equations (A4) and (A5). 
This step is called predictor. Initial conditions are in the form 

where 

s = 0: ui=up, a = a’, i = l,..., n, (A61 

g,(uy ,..., uO,, a’) = 0, i = l,..., n. (A7) 

In the course of integration the truncation (approximation) error causes a deviation 
between the calculated solutions u(s) and the correct profiles U(S). The Newton 
method for variables ui ,..., u,,~ i, u,+ , ,..., u, + , is then used as the corrector to 



DERPER 267 

improve the calculated profiles. The value of u, remains unchanged during these 
corrector iterations. 

More detailed explanation can be found in [ 11. 
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